本文实例为大家分享了OpenCV实现人脸检测功能的具体代码,供大家参考,具体内容如下
1、HAAR级联检测
#include <opencv2/opencv.hpp>#include <iostream>using namespace cv;#include <iostream>#include <cstdlib>using namespace std;int main(int artc, char** argv) {face_detect_haar();waitKey(0);return 0;}void face_detect_haar() {CascadeClassifier faceDetector;std::string haar_data_file = "./models/haarcascades/haarcascade_frontalface_alt_tree.xml";faceDetector.load(haar_data_file);vector<Rect> faces;//VideoCapture capture(0);VideoCapture capture("./video/test.mp4");Mat frame, gray;int count=0;while (capture.read(frame)) {int64 start = getTickCount();if (frame.empty()){break;}// 水平镜像调整// flip(frame, frame, 1);imshow("input", frame);if (frame.channels() == 4)cvtColor(frame, frame, COLOR_BGRA2BGR);cvtColor(frame, gray, COLOR_BGR2GRAY);equalizeHist(gray, gray);faceDetector.detectMultiScale(gray, faces, 1.2, 1, 0, Size(30, 30), Size(400, 400));for (size_t t = 0; t < faces.size(); t++) {count++;rectangle(frame, faces[t], Scalar(0, 255, 0), 2, 8, 0);}float fps = getTickFrequency() / (getTickCount() - start);ostringstream ss;ss.str("");ss << "FPS: " << fps << " ; inference time: " << time << " ms";putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8);imshow("haar_face_detection", frame);if (waitKey(1) >= 0) break;}printf("total face: %d\n", count);}
2、 DNN人脸检测
#include <opencv2/dnn.hpp>#include <opencv2/opencv.hpp>using namespace cv;using namespace cv::dnn;#include <iostream>#include <cstdlib>using namespace std;const size_t inWidth = 300;const size_t inHeight = 300;const double inScaleFactor = 1.0;const Scalar meanVal(104.0, 177.0, 123.0);const float confidenceThreshold = 0.7;void face_detect_dnn();void mtcnn_demo();int main(int argc, char** argv){face_detect_dnn();waitKey(0);return 0;}void face_detect_dnn() {//这里采用tensorflow模型std::string modelBinary = "./models/dnn/face_detector/opencv_face_detector_uint8.pb";std::string modelDesc = "./models/dnn/face_detector/opencv_face_detector.pbtxt";// 初始化网络dnn::Net net = readNetFromTensorflow(modelBinary, modelDesc);net.setPreferableBackend(DNN_BACKEND_OPENCV);net.setPreferableTarget(DNN_TARGET_CPU);if (net.empty()){printf("Load models fail...\n");return;}// 打开摄像头// VideoCapture capture(0);VideoCapture capture("./video/test.mp4");if (!capture.isOpened()) {printf("Don't find video...\n");return;}Mat frame;int count=0;while (capture.read(frame)) {int64 start = getTickCount();if (frame.empty()){break;}// 水平镜像调整// flip(frame, frame, 1);imshow("input", frame);if (frame.channels() == 4)cvtColor(frame, frame, COLOR_BGRA2BGR);// 输入数据调整Mat inputBlob = blobFromImage(frame, inScaleFactor,Size(inWidth, inHeight), meanVal, false, false);net.setInput(inputBlob, "data");// 人脸检测Mat detection = net.forward("detection_out");vector<double> layersTimings;double freq = getTickFrequency() / 1000;double time = net.getPerfProfile(layersTimings) / freq;Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());ostringstream ss;for (int i = 0; i < detectionMat.rows; i++){// 置信度 0~1之间float confidence = detectionMat.at<float>(i, 2);if (confidence > confidenceThreshold){count++;int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);Rect object((int)xLeftBottom, (int)yLeftBottom,(int)(xRightTop - xLeftBottom),(int)(yRightTop - yLeftBottom));rectangle(frame, object, Scalar(0, 255, 0));ss << confidence;std::string conf(ss.str());std::string label = "Face: " + conf;int baseLine = 0;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),Size(labelSize.width, labelSize.height + baseLine)),Scalar(255, 255, 255), FILLED);putText(frame, label, Point(xLeftBottom, yLeftBottom),FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));}}float fps = getTickFrequency() / (getTickCount() - start);ss.str("");ss << "FPS: " << fps << " ; inference time: " << time << " ms";putText(frame, ss.str(), Point(20, 20), 0, 0.75, Scalar(0, 0, 255), 2, 8);imshow("dnn_face_detection", frame);if (waitKey(1) >= 0) break;}printf("total face: %d\n", count);}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
© 2020 asciim码
人生就是一场修行